Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1.
نویسندگان
چکیده
The orphan nuclear receptor, steroidogenic factor-1 (SF-1), plays an important role in the development of the adrenal gland and in sexual differentiation. SF-1 regulates the transcription of variety of genes, including several steroidogenic enzymes, Müllerian inhibiting substance, and gonadotropin genes. In this report, we sought to identify domains in SF-1 that are required for transactivation and to determine whether SF-1 interacts with a subset of known coactivators. Natural variants of the FTZ-F1 locus include embryonal long terminal repeat-binding protein (ELP)-1, ELP-2, and SF-1, which share the DNA-binding domain. Analyses of the transcriptional activity of these variants revealed that the activity of ELP-2 and SF-1 was much greater than ELP-1, which contains a distinct carboxy terminus. Further studies were performed using GAL4-SF-1 fusion proteins that were constructed by replacement of the zinc finger region and FTZ-F1 box of SF-1 with the DNA-binding domain of GAL4. Elimination of the putative AF-2 domain at the carboxy terminus of GAL4-SF-1 proteins resulted in a complete loss of transactivation. Several lines of evidence demonstrated that SF-1 interacts with steroid receptor coactivator-1 (SRC-1). Full-length SRC-1 enhanced GAL4-SF-1-mediated transactivation, whereas a dominant negative form of SRC-1, consisting of its interaction domain alone, inhibited the activity of GAL4-SF-1. In mammalian two-hybrid assays, fusion of the VP16 activation domain to the interaction domain of SRC-1 confirmed the interaction between SRC-1 and GAL4-SF-1 and demonstrated that the AF-2 domain is required for interaction with SRC-1. Furthermore, SRC-1, together with the cAMP responsive element binding protein (CBP) or a closely related factor, p300, synergistically enhanced transcriptional activity of GAL4-SF-1. We conclude that the carboxy-terminal AF-2 region of SF-1 functions as an activation domain and that SRC-1 and CBP/p300 are components of the coactivator complex with SF-1.
منابع مشابه
The nuclear receptor coactivators p300/CBP/cointegrator-associated protein (p/CIP) and transcription intermediary factor 2 (TIF2) differentially regulate PKA-stimulated transcriptional activity of steroidogenic factor 1.
Steroidogenic factor-1 (SF-1) is a member of the nuclear receptor superfamily that plays essential roles in the development of endocrine organs. Steroid receptor coactivator 1 and transcription intermediary factor 2 (TIF2) belong to the p160 coactivator family that mediates transcriptional activation by several nuclear receptors, including SF-1. Here, it is reported that another of the p160 coa...
متن کاملThe steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors.
Steroid receptors are ligand-inducible transcription factors, and their association with steroid receptor coactivators (SRCs) upon binding to DNA is necessary for them to achieve full transcriptional potential. To understand the mechanism of SRC-1 action, its ability to interact and enhance the transcriptional activity of steroid receptors was analyzed. First, we show that SRC-1 is a modular co...
متن کاملSteroid Receptor Coactivator 1 Links the Steroid and Interferon Response Pathways
We show here that steroid receptor coactivator 1 (SRC-1) is a coactivator of MHC class II genes that stimulates their interferon (IFN ) and class II transactivator (CIITA)-mediated expression. SRC-1 interacts physically with the N-terminal activation domain of CIITA through two regions: one central [extending from amino acids (aa) 360–839] that contains the nuclear receptors binding region and ...
متن کاملNRC-interacting factor 1 is a novel cotransducer that interacts with and regulates the activity of the nuclear hormone receptor coactivator NRC.
We previously reported the cloning and characterization of a novel nuclear hormone receptor transcriptional coactivator, which we refer to as NRC. NRC is a 2,063-amino-acid nuclear protein which contains a potent N-terminal activation domain and several C-terminal modules which interact with CBP and ligand-bound nuclear hormone receptors as well as c-Fos and c-Jun. In this study we sought to cl...
متن کاملHuman immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR.
The DNA-binding domain of nuclear hormone receptors functions as an interaction interface for other transcription factors. Using the DNA-binding domain of TRbeta1 as bait in the yeast two-hybrid system, we cloned the Tat binding protein-1 that was originally isolated as a protein binding to the human immunodeficiency virus type 1 Tat transactivator. Tat binding protein-1 has subsequently been i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1998